Вода: электропроводность и теплопроводность. Единицы измерения электропроводности воды. Изучение электропроводности водного раствора питьевой соды Какая разница между электродным и ТЭНовым котлом

НАТРИЙ – (Natrium ) Na , химический элемент 1-й (Ia ) группы Периодической системы, относится к щелочным элементам. Атомный номер 11, относительная атомная масса 22,98977. В природе имеется один стабильный изотоп 23 Na . Известны шесть радиоактивных изотопов этого элемента, причем два из них представляют интерес для науки и медицины. Натрий-22 с периодом полураспада 2,58 года используют в качестве источника позитронов. Натрий-24 (его период полураспада около 15 часов) применяют в медицине для диагностики и для лечения некоторых форм лейкемии.

Степень окисления +1.

Соединения натрия известны с древних времен. Хлорид натрия – необходимейший компонент человеческой пищи.

C читается, что человек начал употреблять его в неолите, т.е. около 5–7 тыс. лет назад.

В Ветхом завете упоминается некое вещество «нетер». Это вещество использовалось как моющее средство. Скорее всего, нетер – это сода, карбонат натрия, который образовывался в соленых египетских озерах с известковыми берегами. Об этом же веществе, но под названием «нитрон» писали позже греческие авторы Аристотель и Диоскорид, а древнеримский историк Плиний Старший, упоминая это же вещество, называл его уже «нитрум».

В 18 в. химикам было известно уже очень много различных соединений натрия. Соли натрия широко применялись в медицине, при выделке кож, при крашении тканей.

Металлический натрий получил впервые английский химик и физик Гемфри Дэви электролизом расплавленного гидроксида натрия (с использованием вольтова столба из 250 пар медных и цинковых пластин). Название «

sodium », выбранное Дэви для этого элемента, отражает его происхождение из соды Na 2 CO 3 . Латинское и русское названия элемента произведены от арабского «натрун» (природная сода). Распространение натрия в природе и его промышленное извлечение. Натрий – седьмой из наиболее распространенных элементов и пятый из наиболее распространенных металлов (после алюминия, железа, кальция и магния). Его содержание в земной коре составляет 2,27%. Большая часть натрия находится в составе различных алюмосиликатов.

Огромные отложения солей натрия в сравнительно чистом виде существуют на всех континентах. Они являются результатом испарения древних морей. Этот процесс по-прежнему продолжается в озере Солт-Лейк (штат Юта), Мертвом море и других местах. Натрий встречается в виде хлорида

NaCl (галит, каменная соль), а также карбоната Na 2 CO 3 · NaHCO 3 ·2 H 2 O (трона), нитрата NaNO 3 (селитра), сульфата Na 2 SO 4 ·10 H 2 O (мирабилит), тетрабората Na 2 B 4 O 7 ·10 H 2 O (бура) и Na 2 B 4 O 7 ·4 H 2 O (кернит) и других солей.

Неиссякаемые запасы хлорида натрия есть в природных рассолах и океанических водах (около 30 кг м –3). Подсчитано, что каменная соль в количестве, эквивалентном содержанию хлорида натрия в Мировом океане, занимала бы объем 19 млн. куб. км (на 50% больше, чем общий объем Североамериканского континента выше уровня моря). Призма такого объема с площадью основания 1 кв. км может достичь Луны 47 раз.

Сейчас суммарное производство хлорида натрия из морской воды достигло 6–7 млн. т в год, что составляет около трети общей мировой добычи.

В живом веществе в среднем содержится 0,02% натрия; в животных его больше, чем в растениях.

Характеристика простого вещества и промышленное получение металлического натрия. Натрий – серебристо-белый металл, в тонких слоях с фиолетовым оттенком, пластичен, даже мягок (легко режется ножом), свежий срез натрия блестит. Величины электропроводности и теплопроводности натрия достаточно высоки, плотность равна 0,96842 г/см 3 (при 19,7° С), температура плавления 97,86° С, температура кипения 883,15° С.

У тройного сплава, содержащего 12% натрия, 47% калия и 41% цезия, – самая низкая температура плавления для металлических систем, равная –78° С.

Натрий и его соединения окрашивают пламя в ярко-желтый цвет. Двойная линия в спектре натрия отвечает переходу 3

s 1 –3 p 1 в атомах элемента.

Химическая активность натрия высока. На воздухе он быстро покрывается пленкой из смеси пероксида, гидроксида и карбоната. В кислороде, фторе и хлоре натрий горит. При сжигании металла на воздухе образуется пероксид

Na 2 O 2 (с примесью оксида Na 2 O ).

С серой натрий реагирует уже при растирании в ступке, серную кислоту восстанавливает до серы или даже до сульфида. Твердый диоксид углерода («сухой лед») при контакте с натрием взрывается (углекислотные огнетушители для тушения горящего натрия применять нельзя!). С азотом реакция идет только в электрическом разряде. Не взаимодействует натрий лишь с инертными газами.

Натрий активно реагирует с водой:

Na + 2 H 2 O = 2 NaOH + H 2

Тепла, которое выделяется при реакции, достаточно, чтобы расплавить металл. Поэтому, если маленький кусочек натрия бросить в воду, он за счет теплового эффекта реакции плавится и капелька металла, который легче воды, «бегает» по поверхности воды, подгоняемая реактивной силой выделяющегося водорода. Со спиртами натрий взаимодействует намного спокойнее, чем с водой:

Na + 2 C 2 H 5 OH = 2 C 2 H 5 ONa + H 2

Натрий легко растворяется в жидком аммиаке с образованием ярко-голубых метастабильных растворов с необычными свойствами. При –33,8° С в 1000 г аммиака растворяется до 246 г металлического натрия. Разбавленные растворы имеют синий цвет, концентрированные – цвет бронзы. Они могут храниться около недели. Установлено, что в среде жидкого аммиака натрий ионизуется:

Na Na + + e –

Константа равновесия этой реакции равна 9,9·10 –3 . Уходящий электрон сольватируется молекулами аммиака и образует комплекс [

e (NH 3) n ] – . Полученные растворы обладают металлической электропроводностью. При испарении аммиака остается исходный металл. При длительном хранении раствора он постепенно обесцвечивается за счет реакции металла с аммиаком с образованием амида NaNH 2 или имида Na 2 NH и выделением водорода.

Хранят натрий под слоем обезвоженной жидкости (керосин, минеральное масло), перевозят только в запаянных металлических сосудах.

Электролитический способ промышленного получения натрия был разработан в 1890. Электролизу подвергали расплав едкого натра, как в опытах Дэви, но с использованием более совершенных источников энергии, чем вольтов столб. В этом процессе наряду с натрием выделяется кислород:

катод (железный):

Na + + e – = Na

анод (никелевый): 4

OH – – 4 e – = O 2 + 2 H 2 O .

При электролизе чистого хлорида натрия возникают серьезные проблемы, связанные, во-первых, с близкими температурой плавления хлорида натрия и температурой кипения натрия и, во-вторых, с высокой растворимостью натрия в жидком хлориде натрия. Добавление к хлориду натрия хлорида калия, фторида натрия, хлорида кальция позволяет снизить температуру расплава до 600° С. Производство натрия электролизом расплавленной эвтектической смеси (сплав двух веществ с самой низкой температурой плавления) 40%

NaCl и 60% CaCl 2 при ~580° С в ячейке, разработанной американским инженером Г.Даунсом, было начато в 1921 Дюпоном вблизи электростанции у Ниагарского водопада.

На электродах протекают следующие процессы:

катод (железный):

Na + + e – = Na Ca 2+ + 2 e – = Ca

анод (графитовый): 2

Cl – – 2 e – = Cl 2 .

Металлические натрий и кальций образуются на цилиндрическом стальном катоде и поднимаются с помощью охлаждаемой трубки, в которой кальций затвердевает и падает обратно в расплав. Хлор, образующийся на центральном графитовом аноде, собирается под никелевым сводом и затем очищается.

Сейчас объем производства металлического натрия составляет несколько тысяч тонн в год.

Промышленное использование металлического натрия связано с его сильными восстановительными свойствами. Долгое время большая часть производимого металла использовалась для получения тетраэтилсвинца

PbEt 4 и тетраметилсвинца PbMe 4 (антидетонаторов для бензина) реакцией алкилхлоридов со сплавом натрия и свинца при высоком давлении. Сейчас это производство быстро сокращается из-за загрязнения окружающей среды.

Еще одна область применения – производство титана, циркония и других металлов восстановлением их хлоридов. Меньшие количества натрия используются для получения соединений, таких как гидрид, пероксид и алкоголяты.

Диспергированный натрий является ценным катализатором при производстве резины и эластомеров.

Растет применение расплавленного натрия в качестве теплообменной жидкости в ядерных реакторах на быстрых нейтронах. Низкая температура плавления натрия, низкая вязкость, малое сечение поглощения нейтронов в сочетании с чрезвычайно высокой теплоемкостью и теплопроводностью делает его (и его сплавы с калием) незаменимым материалом для этих целей.

Натрием надежно очищают трансформаторные масла, эфиры и другие органические вещества от следов воды, а с помощью амальгамы натрия можно быстро определить содержание влаги во многих соединениях.

Соединения натрия. Натрий образует полный набор соединений со всеми обычными анионами. Считается, что в таких соединениях происходит практически полное разделение заряда между катионной и анионной частями кристаллической решетки.

Оксид натрия

Na 2 O синтезируют реакцией Na 2 O 2 , NaOH , а предпочтительнее всего NaNO 2 , с металлическим натрием: Na 2 O 2 + 2Na = 2Na 2 O

2NaOH + 2Na = 2Na 2 O + H 2

2 NaNO 2 + 6 Na = 4 Na 2 O + N 2

В последней реакции натрий можно заменить азидом натрия

NaN 3: NaN 3 + NaNO 2 = 3 Na 2 O + 8 N 2

Хранить оксид натрия лучше всего в безводном бензине. Он служит реактивом для различных синтезов.

Пероксид натрия

Na 2 O 2 в виде бледно-желтого порошка образуется при окислении натрия. При этом в условиях ограниченной подачи сухого кислорода (воздуха ) сначала образуется оксид Na 2 O , который затем превращается в пероксид Na 2 O 2 . В отсутствие кислорода пероксид натрия термически устойчив до ~675° C .

Пероксид натрия широко используется в промышленности как отбеливатель для волокон, бумажной пульпы, шерсти и т.д. Он является сильным окислителем: взрывается в смеси с порошком алюминия или древесным углем, реагирует с серой (при этом раскаляется), воспламеняет многие органические жидкости. Пероксид натрия при взаимодействии с монооксидом углерода образует карбонат. В реакции пероксида натрия с диоксидом углерода выделяется кислород:

Na 2 O 2 + 2 CO 2 = 2 Na 2 CO 3 + O 2

Эта реакция имеет важное практическое применение в дыхательных аппаратах для подводников и пожарных.

Надпероксид натрия

NaO 2 получают при медленном нагревании пероксида натрия при 200–450° С под давлением кислорода 10–15 МПа. Доказательства образования NaO 2 были впервые получены в реакции кислорода с натрием, растворенным в жидком аммиаке.

Действие воды на надпероксид натрия приводит к выделению кислорода даже на холоду:

NaO 2 + H 2 O = NaOH + NaHO 2 + O 2

При повышении температуры количество выделяющегося кислорода увеличивается, так как происходит разложение образующегося гидропероксида натрия:

NaO 2 + 2 H 2 O = 4 NaOH + 3 O 2

Надпероксид натрия является компонентом систем для регенерации воздуха в замкнутых помещениях.

Озонид натрия

Na О 3 образуется при действии озона на безводный порошок гидроксида натрия при низкой температуре с последующей экстракцией красного Na О 3 жидким аммиаком.

Гидроксид натрия

NaOH нередко называют каустической содой или едким натром. Это сильное основание, его относят к типичным щелочам. Из водных растворов гидроксида натрия получены многочисленные гидраты NaOH · nH 2 O , где n = 1, 2, 2,5, 3,5, 4, 5,25 и 7.

Гидроксид натрия очень агрессивен. Он разрушает стекло и фарфор за счет взаимодействия с содержащимся в них диоксидом кремния:

NaOH + SiO 2 = Na 2 SiO 3 + H 2 O

Название «едкий натр» отражает разъедающее действие гидроксида натрия на живые ткани. Особенно опасно попадание этого вещества в глаза.

Врач герцога Орлеанского Никола Леблан (

Leblanc Nicolas ) (1742–1806) в 1787 разработал удобный процесс получения гидроксида натрия из NaCl (патент 1791). Этот первый крупномасштабный промышленный химический процесс стал крупным технологическим достижением в Европе в 19 в. Позднее процесс Леблана был вытеснен электролитическим процессом. В 1874 мировое производство гидроксида натрия составило 525 тыс. т, из которых 495 тыс. т были получены по способу Леблана; к 1902 производство гидроксида натрия достигло 1800 тыс. т., ооднако по способу Леблана были получены только 150 тыс. т.

Сегодня гидроксид натрия – наиболее важная щелочь в промышленности. Ежегодное производство только в США превышает 10 млн. т. Ее получают в огромных количествах электролизом рассолов. При электролизе раствора хлорида натрия образуется гидроксид натрия и выделяется хлор:

катод (железный) 2

H 2 O + 2 e – = H 2 + 2 OH –

анод (графитовый) 2

Cl – – 2 e – = Cl 2

Электролиз сопровождается концентрированием щелочи в огромных выпаривателях. Самый большой в мире (на заводе

PPG Inductries " Lake Charles ) имеет высоту 41 м и диаметр 12 м. Около половины производимого гидроксида натрия используется непосредственно в химической промышленности для получения различных органических и неорганических веществ: фенола, резорцина, b -нафтола, солей натрия (гипохлорита, фосфата, сульфида, алюминатов). Кроме того, гидроксид натрия применяется в производстве бумаги и пульпы, мыла и моющих средств, масел, текстиля. Он необходим и при переработке бокситов. Важной областью применения гидроксида натрия является нейтрализация кислот.

Хлорид натрия

NaCl известен под названиями поваренной соли, каменной соли. Он образует бесцветные мало гигроскопичные кристаллы кубической формы. Хлорид натрия плавится при 801° С, кипит при 1413° С. Его растворимость в воде мало зависит от температуры: в 100 г воды при 20° С растворяется 35,87 г NaCl , а при 80° С – 38,12 г.

Хлорид натрия – необходимая и незаменимая приправа к пище. В далеком прошлом соль приравнивалась по цене к золоту. В древнем Риме легионерам часто платили жалование не деньгами, а солью, отсюда и произошло слово солдат.

В Киевской Руси пользовались солью из Прикарпатья, из соляных озер и лиманов на Черном и Азовском морях. Она обходилась настолько дорого, что на торжественных пирах ее подавали на столы знатных гостей, прочие же расходились «несолоно хлебавши».

После присоединения Астраханского края к Московскому государству важными источниками соли стали озера Прикаспия, и все равно ее не хватало, она была дорога, поэтому возникало недовольство самых бедных слоев населения, которое переросло в восстание, известное под названием Соляного Бунта (1648)

В 1711 Петр I издал указ о введении соляной монополии. Торговля солью стала исключительным правом государства. Соляная монополия просуществовала более полутораста лет и была отменена в 1862.

Ныне хлорид натрия – дешевый продукт. Вместе с каменным углем, известняком и серой он входит в так называемую «большую четверку» минерального сырья, наиболее существенного для химической промышленности.

Большая часть хлорида натрия производится в Европе (39%), Северной Америке (34%) и Азии (20%), в то время как на Южную Америку и Океанию приходится лишь по 3%, а на Африку – 1%. Каменная соль образует обширные подземные месторождения (нередко в сотни метров толщиной), которые содержат более 90%

NaCl . Типичное Чеширское соляное месторождение (главный источник хлорида натрия в Великобритании) занимает площадь 60 ґ 24 км и имеет толщину соляного пласта около 400 м. Одно это месторождение оценивается более чем в 10 11 т.

Мировой объем добычи соли к началу 21 в. достиг 200 млн. т, 60% которой потребляет химическая промышленность (для производства хлора и гидроксида натрия, а также бумажной пульпы, текстиля, металлов, резин и масел), 30% – пищевая, 10% приходится на прочие сферы деятельности. Хлорид натрия используется, например, в качестве дешевого антигололедного реагента.

Карбонат натрия

Na 2 CO 3 часто называют кальцинированной содой или просто содой. Он встречается в природе в виде грунтовых рассолов, рапы в озерах и минералов натрона Na 2 CO 3 ·10 H 2 O , термонатрита Na 2 CO 3 · H 2 O , троны Na 2 CO 3 · NaHCO 3 ·2 H 2 O . Натрий образует и другие разнообразные гидратированные карбонаты, гидрокарбонаты, смешанные и двойные карбонаты, например Na 2 CO 3 ·7 H 2 O , Na 2 CO 3 ·3 NaHCO 3 , aKCO 3 · nH 2 O , K 2 CO 3 · NaHCO 3 ·2 H 2 O .

Среди солей щелочных элементов, получаемых в промышленности, карбонат натрия имеет наибольшее значение. Чаще всего для его производства используют метод, разработанный бельгийским химиком-технологом Эрнстом Сольве в 1863.

Концентрированный водный раствор хлорида натрия и аммиака насыщают диоксидом углерода под небольшим давлением. При этом образуется осадок сравнительно малорастворимого гидрокарбоната натрия (растворимость

NaHCO 3 составляет 9,6 г на 100 г воды при 20° С): NaCl + NH 3 + H 2 O + CO 2 = NaHCO 3 Ї + NH 4 Cl Для получения соды гидрокарбонат натрия прокаливают: NaHCO 3 = Na 2 CO 3 + CO 2 + H 2 O

Выделяющийся диоксид углерода возвращают в первый процесс. Дополнительное количество диоксида углерода получают за счет прокаливания карбоната кальция (известняка):

CaCO 3 = CaO + CO 2

Второй продукт этой реакции – оксид кальция (известь) – используют для регенерации аммиака из хлорида аммония:

CaO + 2 NH 4 Cl = CaCl 2 + 2 NH 3 + H 2 O

Таким образом, единственным побочным продуктом производства соды по методу Сольве является хлорид кальция.

Суммарное уравнение процесса:

NaCl + CaCO 3 = Na 2 CO 3 + CaCl 2

Очевидно, в обычных условиях в водном растворе идет обратная реакция, поскольку равновесие в этой системе нацело смещено справа налево из-за нерастворимости карбоната кальция.

Кальцинированная сода, полученная из природного сырья (натуральная кальцинированная сода), имеет лучшее качество по сравнению с содой, полученной аммиачным способом (содержание хлоридов менее 0,2%). Кроме того, удельные капитальные вложения и себестоимость соды из природного сырья на 40–45% ниже, чем полученной синтетическим путем. Около трети мировой продукции соды приходится сейчас на природные месторождения.

Мировое производство

Na 2 CO 3 в 1999 распределилось следующим образом:
Всего
Сев. Америка
Азия/Океания
Зап. Европа
Вост. Европа
Африка
Лат. Америка
Крупнейший в мире производитель натуральной кальцинированной соды – США, где сосредоточены и самые большие разведанные запасы троны и рапы содовых озер. Месторождение в Вайоминге образует слой толщиной 3 м и площадью 2300 км 2 . Его запасы превышают 10 10 т. В США содовая промышленность ориентирована на природное сырье; последнее предприятие по синтезу соды было закрыто в 1985. Выработка кальцинированной соды в США в последние годы стабилизировалась на уровне 10,3–10,7 млн. т.

В отличие от США, большинство стран мира практически полностью зависят от производства синтетической кальцинированной соды. Второе место в мире по производству кальцинированной соды после США занимает Китай. Выработка этого химиката в КНР в 1999 достигла примерно 7,2 млн. т. Производство кальцинированной соды в России в том же году составило порядка 1,9 млн. т.

Во многих случаях карбонат натрия взаимозаменяем с гидроксидом натрия (например, при получении бумажной пульпы, мыла, чистящих средств). Около половины карбоната натрия используется в стекольной промышленности. Одна из развивающихся областей применения – удаление сернистых загрязнений в газовых выбросах предприятий энергетики и мощных печей. В топливо добавляют порошок карбоната натрия, который реагирует с диоксидом серы с образованием твердых продуктов, в частности сульфита натрия, которые могут быть отфильтрованы или осаждены.

Ранее карбонат натрия широко применялся в качестве «стиральной соды», но эта область применения теперь исчезла из-за использования в быту других моющих средств.

Гидрокарбонат натрия

NaHCO 3 (пищевая сода), применяется, главным образом, как источник диоксида углерода при выпечке хлеба, изготовлении кондитерских изделий, производстве газированных напитков и искусственных минеральных вод, как компонент огнетушащих составов и лекарственное средство. Это связано с легкостью его разложения при 50–100 ° С.

Сульфат натрия

Na 2 SO 4 встречается в природе в безводном виде (тенардит) и в виде декагидрата (мирабилит, глауберова соль). Он входит в состав астрахонита Na 2 Mg (SO 4) 2 ·4 H 2 O , вантгоффита Na 2 Mg (SO 4) 2 , глауберита Na 2 Ca (SO 4) 2 . Наиболее крупные запасы сульфата натрия – в странах СНГ, а также в США, Чили, Испании. Мирабилит, выделенный из природных залежей или рапы соляных озер, обезвоживают при 100° С. Сульфат натрия является также побочным продукт производства хлороводорода с использованием серной кислоты, а также конечным продуктом сотен промышленных производств, в которых применяется нейтрализация серной кислоты с помощью гидроксида натрия.

Данные о добыче сульфата натрия не публикуются, но, по оценке, мировое производство природного сырья составляет около 4 млн. т в год. Извлечение сульфата натрия в качестве побочного продукта оценивается в мире в целом в 1,5–2,0 млн. т.

Долгое время сульфат натрия мало использовался. Теперь это вещество – основа бумажной промышленности, так как

Na 2 SO 4 является главным реагентом в сульфатной варке целлюлозы для приготовления коричневой оберточной бумаги и гофрированного картона. Древесные стружки или опилки переорабатывается в горячем щелочном растворе сульфата натрия. Он растворяет лигнин (компонент древесины, соединяющий волокна) и освобождает волокна целлюлозы, которые затем отправляют на машины для изготовления бумаги. Оставшийся раствор выпаривают, пока он не приобретет способность гореть, давая пар для завода и тепло для выпаривания. Расплавленные сульфат и гидроксид натрия устойчивы к действию пламени и могут быть использованы повторно.

Меньшая часть сульфата натрия применяется при производстве стекла и моющих средств. Гидратированная форма

Na 2 SO 4 ·10 H 2 O (глауберова соль) является слабительным средством. Сейчас она используется меньше, чем раньше.

Нитрат натрия

NaNO 3 называют натриевой или чилийской селитрой. Большие залежи нитрата натрия, найденные в Чили, по-видимому, образовались за счет биохимического разложения органических остатков. Выделившийся вначале аммиак, вероятно, окислился до азотистой и азотной кислот, которые затем прореагировали с растворенным хлоридом натрия.

Получают нитрат натрия поглощением нитрозных газов (смесь оксидов азота) раствором карбоната или гидроксида натрия либо обменным взаимодействием нитрата кальция с сульфатом натрия.

Нитрат натрия применяют как удобрение. Он является компонентом жидких солевых хладагентов, закалочных ванн в металлообрабатывающей промышленности, теплоаккумулирующих составов. Тройная смесь из 40%

NaNO 2 , 7% NaNO 3 и 53% KNO 3 может использоваться от температуры плавления (142° С) до ~600° С. Нитрат натрия используется как окислитель во взрывчатых веществах, ракетных топливах, пиротехнических составах. Он применяется в производстве стекла и солей натрия, в том числе нитрита, служащего консервантом пищевых продуктов.

Нитрит натрия

NaNO 2 может быть получен термическим разложением нитрата натрия или его восстановлением: NaNO 3 + Pb = NaNO 2 + PbO

Для промышленного производства нитрита натрия абсорбируют оксиды азота водным раствором карбоната натрия.

Нитрит натрия

NaNO 2 , кроме использования с нитратами в качестве теплопроводных расплавов, широко применяется в производстве азокрасителей, для ингибирования коррозии и консервации мяса.

Елена

Савинкина ЛИТЕРАТУРА Популярная библиотека химических элементов. М., Наука, 1977
Greenwood N.N., Earnshaw A. Chemistry of the Elements , Oxford: Butterworth, 1997

Розанов Евгений

Сода - многоликое вещество, её применение различно. Соду используют от пищевой промышленности до металлургии. Заинтересовался эти веществом, которое есть у каждого в доме и решил изучить, как проявляются различные свойства водного раствора соды в зависимости от температуры и концентрации раствора

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Работу выполнил: Розанов Евгений. Научный руководитель: Хабарова Ольга Николаевна

Доронинское содовое озеро – гидрологический памятник природы, самое крупное содовое озеро Восточной Сибири. Площадь водоёма в разные сезоны и годы изменяется от 3,7 до 4,8 км2. Средняя глубина воды составляет около 4 м, наибольшая - 6,5 м. На озере находится наиболее известное в Забайкалье месторождение самосадочной соды.

Диоскорид Педаний Грек по происхождению, врач, фармаколог и натуралист, один из основателей ботаники, Диоскорид Педаний родился в Аназарбе, Киликия, Малая Азия (совр. Назарва). Диоскорид много странствовал вместе с римской армией при императоре Нероне, занимаясь военной медициной, коллекционированием и определением растений. Основная работа Диоскорида – «De materia medica» («О лекарственных веществах») содержит описание 600 растений, 1000 различных медицинских препаратов. В Средние века «De materia medica» считалась основным источником знаний по ботанике и фармакологии.

Анри Луи Дюамель дю Монсо Петр Первый

Леблан Изучал медицину, слушал лекции по химии Г. Руэля в Ботаническом саду Парижа. В 1791 году Никола Леблан получил патент на «Способ превращения глауберовой соли в соду». Свою технологию получения соды Леблан предложил герцогу Филиппу Орлеанскому, личным врачом которого он был. В 1789 году герцог подписал с Лебланом соглашение и выделил ему двести тысяч серебряных ливров на строительство завода. Содовый завод в пригороде Парижа Сен-Жени назывался «Франсиада – Сода Леблана» и ежедневно давал 100-120 кг соды. Во время Французской революции в 1793 году герцог Орлеанский был казнен, собственность его конфискована, а содовый завод и сам патент Леблана – национализированы. Лишь через семь лет Леблану вернули разоренный завод, восстановить который ему уже не удалось.

Цель: Исследовать зависимость электропроводности водного раствора питьевой соды от температуры и концентрации водного раствора.

Задачи: Изучить литературу по теме исследования. Провести опрос на знание применения различных областей применения пищевой соды. Научиться готовить раствор питьевой соды различной концентрации. Исследовать зависимость электропроводности от концентрации раствора и температуры.

Актуальность исследования Сода многоликое вещество, её применение различно. Соду используют от пищевой промышленности до металлургии. Знать её свойства- это актуально всегда.

Сода - многоликое вещество

Область применения пищевой соды химическая легкая промышленность текстильная промышленность пищевая промышленность медицинская промышленность металлургия

Химическая промышленность В химической промышленности - для производства красителей, пенопластов и других органических продуктов, фтористых реактивов, товаров бытовой химии.

Металлургия В металлургии - при осаждении редкоземельных металлов и флотации руд.

Текстильная и легкая текстильная промышленность (отделка шелковых и хлопчатобумажных тканей). легкой промышленности - в производстве подошвенных резин и искусственных кож, кожевенном производстве (дубление и нейтрализация кож).

Пищевая промышленность В пищевой промышленности - хлебопечение, производство кондитерских изделий, приготовление напитков.

Медицинская промышленность В медицинской промышленности - для приготовления инъекционных растворов, противо- туберкулезных препаратов и антибиотиков

Анкетирование Как вы считаете в каких областях промышленности используется пищевая сода: Пищевая промышленность Медицина Металлургия Химическая промышленность Легкая промышленность В быту

Результаты опроса

Вывод по анкетированию Большая часть респондентов ответили, что соду используют чаще всего в быту, в пищевой промышленности, в химической промышленности.

Гипотеза Если увеличить концентрацию водного раствора пищевой соды, то её электропроводность увеличится.

Опыт №1 «Приготовление водного раствора пищевой соды» Цель: научиться готовить водный раствор пищевой соды различной концентрации. Оборудование: 3 химических стакана, пищевая сода, фильтрованная вода, весы, разновесы.

№ Масса соды (г) Масса воды (мл) Концентрация соды (%) 1 4 96 4 2 8 92 8 3 12 88 12

Вывод: Экспериментальным путем научился готовить водный раствор пищевой соды различной концентрации.

Опыт№2 «Исследование электропроводности раствора пищевой соды» Цель: доказать, что с увеличением концентрации раствора соды увеличивается ее электропроводность. Оборудование: Источник питания, 2 электрода, 3 стакана с раствором соды различной концентрации, амперметр., вольтметр, соединительные провода, ключ

Схема установки

Таблица № Концентрация соды I (A) U (B) R (Ом) λ =1/ R (1/ Ом=См) 1 4 1,0 6 6 0,17 2 8 1,4 6 4,9 0,23 3 12 1,7 6 3,53 0,28

Формулы для расчёта R=U/I (Ом=В/А) λ =1/R (1/Ом=См)(сименс)

Вывод: Экспериментальным путем научился определять электропроводность пищевой соды и убедился в том, что чем больше концентрация раствора тем больше электропроводность раствора пищевой соды. А сопротивление раствора, с увеличением концентрации, уменьшается.

Опыт № 3 «Исследование зависимости электропроводности от температуры раствора» Цель: Убедиться в том, что электропроводность раствора зависит от температуры. Оборудование: Термометр, Источник питания, 2 электрода, 3 стакана с раствором соды различной концентрации, амперметр., вольтметр, соединительные провода, ключ, нагревательный элемент.

Таблица % раствора t о С раствора I (A) U (B) R (Ом) λ (См) 4 18 1 6 6 0,17 19 1,03 6 5,83 0,172 20 1,05 6 5,71 0,175 21 1,08 6 5,56 0,180 22 1,1 6 5,45 0,183

График 1. Зависимость сопротивления раствора от температуры

График 2. Зависимость электропроводности от температуры

Вывод: Из опыта очевидно, что электропроводность с увеличением температуры, возрастает. При нагревании скорость ионов увеличивается, тем самым ускоряется процесс переноса зарядов из одной точки в другую, от одного электрода к другому.

Заключение: Изучив литературу по теме исследования, проведя социологический опрос, мы пришли к выводу: Сода- многоликое вещество, обладающее различными свойствами Сопротивление раствора соды зависит от его концентрации. Электропроводность раствора также зависит от концентрации. Электропроводность с повышением температуры увеличивается.

Спасибо за внимание!

Предварительный просмотр:

Исследовательская работа
«Изучение электропроводности водного раствора питьевой соды»

Введение

Сода была известна человеку примерно за полторы-две тысячи лет до нашей эры, а может быть, и раньше. Ее добывали из содовых озер и извлекали из немногочисленных месторождений в виде минералов. Первые сведения о получении соды путем упаривания воды содовых озер относятся к 64 году нашей эры. Алхимикам всех стран вплоть до 18 века представлялась неким веществом, которое шипело с выделением какого-то газа при действии известных к тому времени кислот - уксусной и серной. Во времена римского врача Диоскорида Педания о составе соды никто не имел понятия. В 1736 году французский химик, врач и ботаник Анри Луи Дюамель де Монсо впервые смог получить из воды содовых озер очень чистую соду. Ему удалось установить, что сода содержит химический элемент «Натр». В России еще во времена Петра Первого соду называли «зодой» или «зудой» и вплоть до 1860 года ее ввозили из-за границы. В 1864 году в России появился первый содовый завод по технологии француза Леблана. Именно благодаря появлению своих заводов сода стала более доступной и начала свой победный путь в качестве химического, кулинарного и даже лекарственного средства.

В промышленности, торговле и в быту под названием сода встречаются несколько продуктов: кальцинированная сода - безводный углекислый натрий Na 2 СO 3 , двууглекислая сода - бикарбонат натрия NaНСO 3 , часто называемая также питьевой содой, кристаллическая сода Na 2 СO 3 10Н 2 O и Nа 2 СO 3 Н 2 O и каустическая сода, или едкий натр, NаОН.
Современная пищевая сода - типичный промышленный продукт

В настоящее время в мире производится несколько миллионов тонн соды в год для различного использования.

Сода - многоликое вещество, её применение различно. Соду используют от пищевой промышленности до металлургии. Заинтересовался эти веществом, которое есть у каждого в доме и решил изучить, как проявляются различные свойства водного раствора соды в зависимости от температуры и концентрации раствора.

Итак, перед нами стояла цель:

Исследовать зависимость электропроводности водного раствора питьевой соды от температуры и концентрации водного раствора.

Задачи:

  1. Изучить литературу по теме исследования.
  2. Провести опрос на знание применения различных областей применения пищевой соды.
  3. Научиться готовить раствор питьевой соды различной концентрации.
  4. Исследовать зависимость электропроводности от концентрации раствора и температуры.

Актуальность исследования:

Сода многоликое вещество, её применение различно. Соду используют от пищевой промышленности до металлургии. Знать её свойства- актуально всегда.

На слайде представлены основные области применения пищевой соды.

  1. химическая промышленность
  2. легкая промышленность
  3. текстильная промышленность
  4. пищевая промышленность
  5. медицинская промышленность
  6. металлургия

Итак, в химической промышленности - для производства красителей, пенопластов и других органических продуктов, фтористых реактивов, товаров бытовой химии.

  1. В металлургии - при осаждении редкоземельных металлов и флотации руд.
  1. В текстильной промышленности (отделка шелковых и хлопчатобумажных тканей).
  2. В легкой промышленности - в производстве подошвенных резин и искусственных кож, кожевенном производстве (дубление и нейтрализация кож).
  3. В пищевой промышленности - хлебопечение, производство кондитерских изделий, приготовление напитков.
  1. В медицинской промышленности - для приготовления инъекционных растворов, противотуберкулезных препаратов и антибиотиков

После изучения теоретического материала, я решил узнать у своих одноклассников, знают ли они, в каких областях промышленности используется пищевая сода:

  1. В быту
  2. Пищевая промышленность
  3. Медицина
  4. Химическая промышленность
  5. Металлургия
  6. Легкая промышленность

Вот результаты опроса: наибольшее количество респондентов ответило:

  1. В быту -63%
  2. Пищевая промышленность-71%
  3. Химическая промышленность- 57%, наименьшее количество респондентов указало на использование соды в металлургии и легкой промышленности.

Для проведения дальнейших исследований мне было необходимо приготовить водный раствор разной концентрации.

Гипотеза

Итак, если увеличить концентрацию водного раствора пищевой соды, то её электропроводность увеличится.

II. Экспериментальная часть

«Исследование электропроводности водного раствора пищевой соды»

Цель: убедиться в том, в водном растворе соды имеются носители электричества – ионы, которые проводят электрический ток.

Оборудование: сода пищевая, стаканы химические из термостойкого стекла, электроды, соединительные провода, источник питания, амперметр, вольтметр, ключ, лабораторные весы, разновесы, термометр, электрическая плитка.

Опыт 1. «Приготовление водного раствора пищевой соды»

Цель: Научиться готовить водный раствор пищевой соды различной концентрации.

Оборудование: стаканы химические из термостойкого стекла, фильтрованная вода, весы, разновесы, пищевая сода.

Выполнение опыта:

  1. На весах завесить 4 г пищевой соды;
  2. В химический стакан налить 96 мл. фильтрованной воды;
  3. Пересыпать соду в стакан с водой и тщательно перемешать;
  4. Повторить опыт для приготовления раствора 8% и 12%

Масса соды (г)

Количество воды (мл)

концентрация соды в (%)

Вывод: Экспериментальным путем научился готовить водный раствор пищевой соды различной концентрации.

Опыт 2. «Исследование электропроводности раствора пищевой соды»

Цель: доказать, что с увеличением концентрации раствора соды увеличивается ее электропроводность.

Оборудование: три стакана с раствором пищевой соды различной концентрации, источник питания, амперметр, вольтметр, соединительные провода, ключ, электроды.

Удельное сопротивление - скалярная величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади . Чем больше удельное сопротивление материала проводника, тем больше его электрическое сопротивление.

Единица удельного сопротивления – ом-метр (1 Ом·м).

Выполнение опыта:

  1. Собрать электрическую цепь по схеме;
  2. Поместить электроды в химический стакан с концентрацией раствора пищевой соды 4%, 8% и 12%;
  3. Измерить показания амперметра и вольтметра;
  4. Рассчитать сопротивление раствора;
  5. Рассчитать электропроводность раствора.

Таблица 2.

Концентрация соды

I (A)

U (B)

R (Ом)

λ=1 R (1Ом=См)

0,17

0,23

3,53

0,28

Для опыта по схеме собрали электрическую цепь. Изменяя концентрацию водного раствора, записываем показания амперметра и вольтметра.

Измерения проводились при температуре 18 0 С и давлении атмосферы 757 мм.рт.ст.

Вывод: Экспериментальным путем научился определять электропроводность пищевой соды и убедился в том, что чем больше концентрация раствора тем больше электропроводность раствора пищевой соды. А сопротивление раствора, с увеличением концентрации, уменьшается. Следовательно при 12% растворе пищевой соды электропроводность будет самая высокая, а сопротивление самое низкое.

Опыт 3. «Исследование зависимости электропроводности от температуры раствора»

Цель: Убедиться, что электропроводность изменяется при изменении температуры.

Оборудование: три стакана с раствором пищевой соды различной концентрации, источник питания, амперметр, вольтметр, соединительные провода, ключ, электроды, термометр, электрическая плитка.

Выполнение опыта:

  1. Собрать установку по схеме;
  2. 4% раствор пищевой соды поставить на плитку;
  3. Включить плитку;
  4. Фиксировать температуру раствора;
  5. Измерять показания амперметра и вольтметра через каждый градус раствора;
  6. Рассчитать сопротивление и электропроводность по формулам.

    1,05

    5,71

    0,175

    1,08

    5,56

    0,180

    5,45

    0,183

    λ=1R (1Ом=См)

    Вывод: Из опыта очевидно, что электропроводность с увеличением температуры, возрастает. При нагревании скорость ионов увеличивается, тем самым ускоряется процесс переноса зарядов из одной точки в другую.

    График 1. Зависимость сопротивления раствора от температуры.

    График 2. Зависимость электропроводности от температуры

    Заключение

    Изучив литературу о свойствах пищевой соды, ее применении в медицине, пищевой промышленности, быту, проделав ряд опытов, мы убедились в том, что:

    1. Сода- многоликое вещество, обладающее различными свойствами
    2. Сопротивление раствора соды зависит от его концентрации.
    3. Электропроводность раствора также зависит от концентрации.
    4. Электропроводность с повышением температуры увеличивается.

    Литература

    1. Общая химическая технология. Под ред. И. П. Мухленова. Учебник для химико-технологических специальностей вузов. - М.: Высшая школа.
    2. Основы общей химии, т. 3, Б. В. Некрасов. - М.: Химия, 1970.
    3. Общая химическая технология. Фурмер И. Э., Зайцев В. Н. - М.: Высшая школа, 1978.
    4. Общая химическая технология, под ред. И. Вольфковича, т. 1, Сода М. - Л., 1953, с. 512-54;
    5. Беньковский В., Технология содопродуктов, М, 1972;
    6. Шокин И. Н., Крашенинников Сода А., Технология соды, М., 1975.

Вода – уникальное вещество, которое имеет сложную молекулярную структуру, до конца еще не изученную. Вне зависимости от агрегатного состояния, молекулы H2O прочно связаны между собой, что определяет множество физических свойств воды и ее растворов. Давайте выясним,обладает ли обычная вода тепло- и электропроводностью.

К основным физическим свойствам H2O относятся:

  • плотность;
  • прозрачность;
  • цвет;
  • запах;
  • вкус;
  • температура;
  • сжимаемость;
  • радиоактивность;
  • тепло- и электропроводность.

Последние характеристики теплопроводность и электропроводность воды – очень нестабильны и зависят от многих факторов. Рассмотрим их более подробно.

Электропроводность

Электрический ток представляет собой одностороннее движение негативно заряженных частиц – электронов. Некоторые вещества могут переносить эти частицы, а некоторые – нет. Эта способность выражается в числовой форме и представляет собой значение электропроводности.

До сих пор идут дискуссии насчет того, обладает ли электропроводностью чистая вода.Она способна проводить ток, но очень плохо. Электропроводность дистиллята объясняется тем, что молекулы H2 O частично распадаются на ионы H+ и OH-. Электрочастицы передвигаются с помощью позитивно заряженных ионов водорода, которые способны перемещаться в толще воды.

От чего зависит электропроводность жидкости

Электропроводность H2 O зависит от таких факторов, как:

  • наличие и концентрация ионных примесей (минерализация);
  • природа ионов;
  • температура жидкости;
  • вязкость воды.

Первые два фактора являются определяющими. Поэтому вычислив значение электропроводности жидкости, мы сможем судить о степени ее минерализации.

В природе не существует чистой воды. Даже родниковая представляет собой некий раствор солей, металлов и других электролитных примесей. Это прежде всего ионы Na+, K+, Ca2 +, Cl-, SO4 2-, HCO3 -. Также в ее состав могут входить слабые электролиты, которые неспособны сильно изменить свойство проводить ток. К ним относятся Fe3 +, Fe2 +, Mn2 +, Al3 +, NO3 -, HPO4 – и другие. Сильное влияние на электропроводность они способны оказать только в случае высокой концентрации, как, например, это бывает в сточных водах с отходами производства. Интересно, что наличие примесей в воде, которая находится в состоянии льда, не влияет на ее способность проводить электричество.

Электропроводность морской воды

Морская вода способна лучше проводить электрический ток, чем пресная. Это объясняется наличием в ней растворенной соли NaCl, которая является хорошим электролитом. Механизм увеличения проводимости можно описать следующим образом:

  1. Хлорид натрия при растворении в воде распадается на ионы Na+ и Cl-, которые имеют разные заряды.
  2. Ионы Na+притягивают электроны, так как имеют противоположный заряд.
  3. Движение ионов натрия в толще воды приводит к перемещению электронов, что, в свою очередь, ведет к возникновению электрического тока.

Таким образом, электропроводность воды определяется наличием в ней солей и других примесей. Чем их меньше, тем ниже способность проводить электрический ток. У дистиллированной воды она практически нулевая.

Измерение электропроводности

Измерение электропроводности растворов осуществляется с помощью кондуктометров. Это специальные приборы, принцип действия которых основан на анализе соотношения электропроводности и концентрации примесей-электролитов. На сегодняшний день существует множество моделей, которые способны измерять электропроводность не только высококонцентрированных растворов, но и чистой дистиллированной воды.

Теплопроводность

Теплопроводность – это способность физического вещества проводить тепло от нагретых частей к более холодным. Вода, как и другие вещества, обладает таким свойством. Передача тепла происходит либо от молекулы к молекуле H2 O, что представляет собой молекулярный тип теплопроводности, либо при перемещении потоков жидкости – турбулентный тип.

Теплопроводность воды в несколько раз выше, чем у других жидких веществ, за исключением расплавленных металлов – у них этот показатель еще более высокий.

Способность воды проводить тепло зависит от двух факторов: давления и температуры. При увеличении давления показатель проводимости растет, при повышении температуры до 150 °C растет, затем начинает снижаться.

Почему вода в бассейне кажется нам холодной

Теплопроводность воды в несколько десятков раз превышает это значение у воздуха. Когда человек погружается в воду или же просто обливается ею, теплопотеря возрастает, поэтому ему становится гораздо холоднее, чем на воздухе такой же температуры. Это видно на примерах, приведенных в таблице:

Самые интересные факты о воде: Видео


Исследовательская работа «Изучение электропроводности водного раствора питьевой соды»
Введение
Сода была известна человеку примерно за полторы-две тысячи лет до нашей эры, а может быть, и раньше. Ее добывали из содовых озер и извлекали из немногочисленных месторождений в виде минералов. Первые сведения о получении соды путем упаривания воды содовых озер относятся к 64 году нашей эры. Алхимикам всех стран вплоть до 18 века представлялась неким веществом, которое шипело с выделением какого-то газа при действии известных к тому времени кислот - уксусной и серной. Во времена римского врача Диоскорида Педания о составе соды никто не имел понятия. В 1736 году французский химик, врач и ботаник Анри Луи Дюамель де Монсо впервые смог получить из воды содовых озер очень чистую соду. Ему удалось установить, что сода содержит химический элемент «Натр». В России еще во времена Петра Первого соду называли «зодой» или «зудой» и вплоть до 1860 года ее ввозили из-за границы. В 1864 году в России появился первый содовый завод по технологии француза Леблана. Именно благодаря появлению своих заводов сода стала более доступной и начала свой победный путь в качестве химического, кулинарного и даже лекарственного средства.
В промышленности, торговле и в быту под названием сода встречаются несколько продуктов: кальцинированная сода - безводный углекислый натрий Na2СO3, двууглекислая сода - бикарбонат натрия NaНСO3, часто называемая также питьевой содой, кристаллическая сода Na2СO3 10Н2O и Nа2СO3 Н2O и каустическая сода, или едкий натр, NаОН.Современная пищевая сода - типичный промышленный продукт
В настоящее время в мире производится несколько миллионов тонн соды в год для различного использования.
Сода - многоликое вещество, её применение различно. Соду используют от пищевой промышленности до металлургии. Заинтересовался эти веществом, которое есть у каждого в доме и решил изучить, как проявляются различные свойства водного раствора соды в зависимости от температуры и концентрации раствора.
Итак, перед нами стояла цель:
Исследовать зависимость электропроводности водного раствора питьевой соды от температуры и концентрации водного раствора.
Задачи:
Изучить литературу по теме исследования.
Провести опрос на знание применения различных областей применения пищевой соды.
Научиться готовить раствор питьевой соды различной концентрации.
Исследовать зависимость электропроводности от концентрации раствора и температуры.
Актуальность исследования:
Сода многоликое вещество, её применение различно. Соду используют от пищевой промышленности до металлургии. Знать её свойства- актуально всегда.
На слайде представлены основные области применения пищевой соды.
химическая промышленность
легкая промышленность
текстильная промышленность
пищевая промышленность
медицинская промышленность
металлургия
Итак, в химической промышленности - для производства красителей, пенопластов и других органических продуктов, фтористых реактивов, товаров бытовой химии.
В металлургии - при осаждении редкоземельных металлов и флотации руд.
В текстильной промышленности (отделка шелковых и хлопчатобумажных тканей).
В легкой промышленности - в производстве подошвенных резин и искусственных кож, кожевенном производстве (дубление и нейтрализация кож).
В пищевой промышленности - хлебопечение, производство кондитерских изделий, приготовление напитков.
В медицинской промышленности - для приготовления инъекционных растворов, противотуберкулезных препаратов и антибиотиков
После изучения теоретического материала, я решил узнать у своих одноклассников, знают ли они, в каких областях промышленности используется пищевая сода:
В быту
Пищевая промышленность
Медицина
Химическая промышленность
Металлургия
Легкая промышленность
Вот результаты опроса: наибольшее количество респондентов ответило:
В быту -63%
Пищевая промышленность-71%
Химическая промышленность- 57%, наименьшее количество респондентов указало на использование соды в металлургии и легкой промышленности.
Для проведения дальнейших исследований мне было необходимо приготовить водный раствор разной концентрации.
Гипотеза
Итак, если увеличить концентрацию водного раствора пищевой соды, то её электропроводность увеличится.
II. Экспериментальная часть
«Исследование электропроводности водного раствора пищевой соды»
Цель: убедиться в том, в водном растворе соды имеются носители электричества – ионы, которые проводят электрический ток.
Оборудование: сода пищевая, стаканы химические из термостойкого стекла, электроды, соединительные провода, источник питания, амперметр, вольтметр, ключ, лабораторные весы, разновесы, термометр, электрическая плитка. Опыт 1. «Приготовление водного раствора пищевой соды»
Цель: Научиться готовить водный раствор пищевой соды различной концентрации.
Оборудование: стаканы химические из термостойкого стекла, фильтрованная вода, весы, разновесы, пищевая сода.
Выполнение опыта:
На весах завесить 4 г пищевой соды;
В химический стакан налить 96 мл. фильтрованной воды;
Пересыпать соду в стакан с водой и тщательно перемешать;
Повторить опыт для приготовления раствора 8% и 12%
№ Масса соды (г) Количество воды (мл) концентрация соды в (%)
1 4 96 4
2 8 92 8
3 12 88 12
Вывод: Экспериментальным путем научился готовить водный раствор пищевой соды различной концентрации.
Опыт 2. «Исследование электропроводности раствора пищевой соды»
Цель: доказать, что с увеличением концентрации раствора соды увеличивается ее электропроводность.
Оборудование: три стакана с раствором пищевой соды различной концентрации, источник питания, амперметр, вольтметр, соединительные провода, ключ, электроды.
Удельное сопротивление - скалярная величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади. Чем больше удельное сопротивление материала проводника, тем больше его электрическое сопротивление.
Единица удельного сопротивления – ом-метр (1 Ом·м).
Выполнение опыта:
Собрать электрическую цепь по схеме;
Поместить электроды в химический стакан с концентрацией раствора пищевой соды 4%, 8% и 12%;
Измерить показания амперметра и вольтметра;
Рассчитать сопротивление раствора;
Рассчитать электропроводность раствора.
Таблица 2.
№ Концентрация соды I (A) U (B) R (Ом) λ=1 R (1Ом=См)1 4 1,0 6 6 0,17
2 8 1,4 6 4,9 0,23
3 12 1,7 6 3,53 0,28
Для опыта по схеме собрали электрическую цепь. Изменяя концентрацию водного раствора, записываем показания амперметра и вольтметра.
Измерения проводились при температуре 180С и давлении атмосферы 757 мм.рт.ст.
Вывод: Экспериментальным путем научился определять электропроводность пищевой соды и убедился в том, что чем больше концентрация раствора тем больше электропроводность раствора пищевой соды. А сопротивление раствора, с увеличением концентрации, уменьшается. Следовательно при 12% растворе пищевой соды электропроводность будет самая высокая, а сопротивление самое низкое.
Опыт 3. «Исследование зависимости электропроводности от температуры раствора»
Цель: Убедиться, что электропроводность изменяется при изменении температуры.
Оборудование: три стакана с раствором пищевой соды различной концентрации, источник питания, амперметр, вольтметр, соединительные провода, ключ, электроды, термометр, электрическая плитка.Выполнение опыта:
Собрать установку по схеме;
4% раствор пищевой соды поставить на плитку;
Включить плитку;
Фиксировать температуру раствора;
Измерять показания амперметра и вольтметра через каждый градус раствора;
Рассчитать сопротивление и электропроводность по формулам.
Для исследования этой зависимости 4 % процентный раствор пищевой соды стали нагревать фиксируя температуру при помощи термометра.
Таблица 3.
% раствора tо С раствора I (A) U (B) R (Ом) λ (См)
4 18 1 6 6 0,17
19 1,03 6 5,83 0,172
20 1,05 6 5,71 0,175
21 1,08 6 5,56 0,180
22 1,1 6 5,45 0,183
λ=1R (1Ом=См)
Вывод: Из опыта очевидно, что электропроводность с увеличением температуры, возрастает. При нагревании скорость ионов увеличивается, тем самым ускоряется процесс переноса зарядов из одной точки в другую.
График 1. Зависимость сопротивления раствора от температуры.
График 2. Зависимость электропроводности от температуры
Заключение
Изучив литературу о свойствах пищевой соды, ее применении в медицине, пищевой промышленности, быту, проделав ряд опытов, мы убедились в том, что:
Сода- многоликое вещество, обладающее различными свойствами
Сопротивление раствора соды зависит от его концентрации.
Электропроводность раствора также зависит от концентрации.
Электропроводность с повышением температуры увеличивается.
Литература
Общая химическая технология. Под ред. И. П. Мухленова. Учебник для химико-технологических специальностей вузов. - М.: Высшая школа.
Основы общей химии, т. 3, Б. В. Некрасов. - М.: Химия, 1970.
Общая химическая технология. Фурмер И. Э., Зайцев В. Н. - М.: Высшая школа, 1978.
Общая химическая технология, под ред. И. Вольфковича, т. 1, Сода М. - Л., 1953, с. 512-54;
Беньковский В., Технология содопродуктов, М, 1972;
Шокин И. Н., Крашенинников Сода А., Технология соды, М., 1975.