Ваттметр для измерения мощности: назначение, типы, подключение, применение. Цифровой ваттметр: обзор, характеристики, виды и отзывы Ваттметр применение

Измерение активной мощности в однофазной цепи производится одноэлементными ваттметрами. Для измерения активной мощности в трехфазных цепях используются специальные двух-и трехэлементные ваттметры.

Расширение диапазонов измерения во всех случаях применения ваттметров в цепях переменного тока осуществляется с помощью измерительных трансформаторов тока и напряжения.

Измерение мощности методом одного прибора. При использовании метода одного прибора измерение мощности осуществляется с помощью одноэлементного ваттметра. Метод применяется при измерении мощности в однофазных цепях и симметричных трехфазных цепях (комплексные сопротивления фаз одинаковы). И в том и в другом случае обмотка напряжения ваттметра включается на фазное напряжение, а обмотка тока включается в рассечку провода какой-либо фазы.

На рис. 11.3 показано включение одноэлементного ваттметра в однофазную цепь переменного тока. Показание ваттметра определяется формулой

Р^= иісоьц,

где и и / - действующие значения напряжения и тока нагрузки; Ф - угол между и и /.

Рис. 11.3.

и векторная диаграмма

На рис. 11.4, а , б показано включение одноэлементного ваттметра в симметричную трехфазную трехпроводную цепь.

На рис. 11.4, а нагрузка соединена звездой и нулевая точка доступна. На рис. 11.4, б нагрузка соединена треугольником. Если ваттметр невозможно включить в фазу так, как это показано на рис. 11.4, б, или нулевая точка при соединении нагрузки звездой (рис. 11.4, а) недоступна, то в этом случае используется искусственная нулевая точка. Показание ваттметра в таком включении соответствует мощности одной фазы.

Рис. 11.4. Схемы включения ваттметра в трехфазную трехпроводную цепь при полной симметрии: а - нагрузка соединена звездой и нулевая точка доступна;

Искусственная нулевая точка обычно создается с помощью двух резисторов (сопротивление каждого резистора равно сопротивлению цепи обмотки напряжения ваттметра) и сопротивления цепи обмотки напряжения. Сопротивление цепи обмотки напряжения любого ваттметра либо приведено на циферблате прибора, либо указывается в техническом паспорте на данный прибор.

Включение ваттметра в трехфазную трехпроводную цепь по схеме с искусственной нулевой точкой показано на рис. 11.5.

Рис. 11.5.

Мощности одной фазы будет соответствовать и показание ваттметра в схеме на рис. 11.5. Действительно, фазное напряжение U A , на которое включена обмотка напряжения ваттметра, равно U АВ л1 3. Линейный ток 1 А в токовой обмотке ваттметра

1 АВ у/3. Следовательно, показание ваттметра

P w - ^ IАВ ^ C0S О А 1 Уд ) = U АВ I АВ COS ф.

Для получения мощности всей трехфазной цепи во всех трех рассматриваемых случаях необходимо показание ваттметра утроить:

Эти рассуждения справедливы лишь при измерении мощности в симметричных цепях, т. е. при симметрии напряжений и равенстве комплексных сопротивлений фаз.

Расширение диапазона измерения ваттметра по току в цепях с большими токами производится с помощью измерительного трансформатора тока. Диапазон измерения по напряжению расширяют с помощью измерительного трансформатора напряжения.

Для примера на рис. 11.6, а показано включение ваттметра для измерения мощности в однофазной цепи через измерительный трансформатор тока, а на рис. 11.6, б - через измерительный трансформатор тока и измерительный трансформатор напряжения.

Рис. 11.6. Схемы включения ваттметра в однофазную цепь переменного тока: а - с использованием измерительного трансформатора тока: б - с использованием измерительных трансформаторов тока и напряжения

Следует обращать внимание на правильность подключения генераторных зажимов ваттметра и соответствующих зажимов измерительных трансформаторов. В схеме рис. 11.6, а значение измеряемой мощности Р вычисляется умножением показания ваттметра Рцг на номинальный коэффициент трансформации К 1ном применяемого измерительного трансформатора тока:

^ ~ ^№^1 пом"

В схеме рис. 11.6, б значение измеряемой мощности определяется по формуле

Р -^Щ^/ном ^Ч/ном’

где К ином - номинальный коэффициент трансформации используемого измерительного трансформатора напряжения.

Измерение мощности методом двух приборов. Метод двух приборов используется при измерении мощности в трехфазной трехпроводной цепи с помощью двух одноэлементных ваттметров. Метод дает правильные результаты независимо от схемы соединения и характера нагрузки как при симметрии, так и при асимметрии токов и напряжений.

На рис. 11.7, а изображена схема включения двух одноэлементных ваттметров. Обычно токовая обмотка одного ваттметра, например РИ / ] , включается в фазу А, а токовая обмотка другого ваттметра - Р? 2 - в фазу С. Обмотки напряжения ваттметров включаются на линейные напряжения так, как это показано на рисунке.

Рис. 11.7.

(а) и векторная диаграмма (б)

На рис. 11.7, 6 представлена векторная диаграмма цепи для частного случая - случая симметрии токов и напряжений.

Показание ваттметра PW X в этом случае равно

PW X = U AB I A cos (30° + Ф) = и я / л cos (30° + ф), (11.1)

а показание ваттметра PW 2 есть

PW 2 = U CB I c cos (30° - ф) = и л 1 я cos (30°-ф). (11.2)

Учитывая, что при измерении мощности с использованием метода двух приборов общая мощность цепи равна алгебраической сумме показаний ваттметров, а из выражения (11.1) и (11.2), получаем:

Р = PW X + PW 2 = U n 1 Ч cos (30° + ф) + U n 1 Л cos (30° - ф).

После несложных преобразований имеем:

Р= и л 1 л 2cos 30° cos ф = л/3 Ц л 1 Л cos ф. (11.3)

Таким образом, сумма показаний ваттметров PW X и PW 2 , определяемая (11.3), есть не что иное, как мощность трехфазной цепи.

Отметим, что в соответствии с (11.1) и (11.2) показания каждого ваттметра могут быть положительными или отрицательными в зависимости от значения угла ф и его знака. При ф = 0, т. е. при чисто активной нагрузке, показание ваттметра PW X равно показанию ваттметра PW 2 .

Двухэлементные ваттметры, обычно называемые трехфазными ваттметрами, представляют собой конструкцию из двух измерительных механизмов одноэлементных ферродинамических ваттметров с одной общей подвижной частью.

Конструкция двухэлементного ферродинамического измерительного механизма, широко используемого для построения трехфазных ваттметров, показано на рис. 11.8. Два шихтованных


~ ^

Рис. 11.8. Измерительный механизм двухэлементного ферродинамического ваттметра: 1 и 7 - пружина плоская для растяжки; 2 - мостик; 3 - токопроводы; 4 и 6 - магнитопроводы; 5 - токовые катушки; 8 - пластины успокоителя; 9 - жидкость ПСМ; 10 - токовые катушки; 11 - пластина магнитопровода

магнитопровода 6 имеют неподвижные токовые обмотки 5. Обмотки напряжения, выполненные в виде подвижных рамок 10, укреплены на общей оси.

Включение токовых обмоток и обмоток напряжения трехфазных двухэлементных ваттметров производится по схеме рис. 11.7.

Расширение диапазонов измерения трехфазных двухэлементных ваттметров так же, как и одноэлементных однофазных ваттметров, осуществляется с помощью измерительных трансформаторов тока и напряжения. На рис. 11.9 показано включение элементов двухэлементного трехфазного ваттметра в трехфазную трехпроводную цепь через измерительные трансформаторы тока. В этом случае для получения мощности цепи показание ваттметра необходимо умножить на номинальный коэффициент трансформации АТ /ном применяемых измерительных трансформаторов тока. Если измерение мощности осуществляется двумя одноэлементными ваттметрами, то на значение АГ /Н0М умножается арифметическая сумма показаний ваттметров.

Рис. 11.9.

Измерение мощности методом трех приборов. Известно, что метод трех приборов применяется при измерении мощности в трехфазной четырехпроводной цепи (при этом используются три одноэлементных ваттметра). Так же, как и метод двух приборов, метод трех приборов дает правильные результаты независимо от схемы соединения и характера нагрузки как при симметрии, так и при асимметрии токов и напряжений. По схеме, реализующей метод трех приборов, включаются также элементы трехэлементных трехфазных ваттметров.

На рис. 11.10 приведена схема включения трех одноэлементных ваттметров по методу трех приборов в трехфазную четырехпроводную цепь, в этом случае каждый ваттметр измеряет мощность одной фазы:

Лк 2 = Рв = и в 1 в со$ (р в,

Лк 3 = Рс = и с 1 с со$ ф с,

где и л, и в и и с - фазные напряжения; 1 А, 1 в и / с - фазные токи; ф г и ф с - фазовые сдвиги между соответствующими фазными напряжениями и фазными токами.

Рис. 11.10.

четырехпроводиую цепь

Очевидно, что для нахождения мощности трехфазной четырехпроводной цепи необходимо взять алгебраическую сумму показаний всех ваттметров:

Р= Р А + Р в + Р С = Рщ + Лк 2 + Лк,

Конструктивная схема трехэлементного трехфазного ферро-динамического ваттметра приведена на рис. 11.11.

Каждый элемент содержит выполненный из магнитомягкого материала шихтованный магнитопровод с неподвижной токовой обмоткой 3. Подвижные рамки элементов 2 жестко укреплены на одной оси. Таким образом, на подвижную часть трехфазного трехэлементного ваттметра действует арифметическая сумма моментов всех трех элементов. Непосредственное включение элементов ваттметра в трехфазную четырехпроводную цепь осуществляется по схеме, изображенной на рис. 11.10.

Рис. 11.11. Трехэлементный ферродинамический измерительный механизм: 1 - магнитопровод; 2 - подвижные рамки; 3 - неподвижные обмотки

Расширение диапазонов измерения трехэлементных трехфазных ваттметров осуществляется так же, как и двухэлементных ваттметров, - с помощью измерительных трансформаторов тока и напряжения.

Контрольные вопросы

  • 1. На что следует обращать внимание при подключении электродинамического ваттметра?
  • 2. Как создается искусственная нулевая точка?
  • 3. Какие ваттметры применяются в трехфазной четырехпроводной цепи?

Показание ваттметра равно произведению напряжения на зажимах его параллельной цепи , тока его последовательной обмотки и косинуса угла между векторами и (рис. 13.1).

Рис. 13.1. Определение показания ваттметра

Стрелки напряжения и тока на схеме ваттметра начинаются у зажимов, отмеченных звездочками, так называемых генераторных зажимов.

Из рис. 11.1 следует:

Данное вычисление может быть оформлено и иначе:

При измерении мощности в реальных цепях в зависимости от схемы подключения ваттметра показание последнего может быть как положительным, так и отрицательным. Поэтому результат может получиться и со знаком минус.

14. Преобразование электрической цепи

В соответствии с заданием № 3 к расчету электрической цепи однофазного синусоидального тока часть заданной цепи (см. рис. 11.1), содержащую обе ЭДС и подключенную к зажимам и (к

зажимам переменного элемента третьей ветви), требуется представить в виде эквивалентного генератора (рис. 14.1), параметры которого определяются на основании теоремы об активном двухполюснике.

ЭДС эквивалентного генератора равна напряжению холостого хода на разомкнутых

зажимах двухполюсника (рис. 14.2).

Для ее определения необходимо сначала найти ток :

и затем напряжение :

или по другой формуле (через параметры первой ветви):

Внутреннее сопротивление эквивалентного генератора Z Э равно входному сопротивлению двухполюсника (входному сопротивлению цепи на рис. 14.2 относительно зажимов и при

мысленно закороченных ЭДС):

Рис. 14.2. Холостой ход активного двухполюсника

Для проверки найденных и найдем ток по схеме рис. 14.1 при заданном значении :

Получили величину, равную найденной ранее.

15. Построение круговой диаграммы

Записываем комплексное уравнение окружности для неразветвлённой цепи (рис. 14.1):

,

где – ток короткого замыкания, протекающий по цепи при закороченном переменном

сопротивлении и равный

Ψ – угол, равный разности аргументов переменного и постоянного комплексных сопротивлений:

Порядок построения круговой диаграммы

1. Выбираем масштабы ЭДС – m E , тока – m I и сопротивления – m Z .

2. На комплексной плоскости по выражению (14.1) в выбранном масштабе откладываем вектор ЭДС эквивалентного генератора (рис. 15.1).

3. По данным формулы (15.1) проводим вектор тока короткого замыкания . Его длина равна

модулю тока короткого замыкания, делённому на масштаб тока:

Рис. 15.1. Круговая диаграмма тока

4. На векторе от его начала откладываем отрезок , определяющий в масштабе сопротивления модуль постоянного сопротивления :

5. Через точку а под углом –Ψ к направлению проводим линию переменного параметра (л.п.п.). Для правильного её проведения мы должны зайти за точку а (идя от начала вектора ) и

отложить в нужном направлении угол –Ψ. В рассматриваемом примере этот угол отрицателен (–Ψ = –129,7°), поэтому он откладывается по часовой стрелке.

Из точки 0 (из начала координат) перпендикулярно линии переменного параметра проводим отрезок 0D

Из середины вектора (из точки р ) восстанавливаем перпендикуляр pb. Точка пересечения

отрезков pb и 0D (точка с ) – центр окружности, отрезок 0с – её радиус.

Устанавливаем остриё циркуля в точку с и радиусом, равным отрезку с0 , проводим дугу окружности между точками 0 и К . Рабочая часть окружности лежит с той же стороны от вектора , что и линия переменного параметра.

Для определения тока по диаграмме откладываем на линии переменного параметра отрезок аn , равный в масштабе m Z заданному значению переменного сопротивления: аn = . Из начала

координат через точку n проводим прямую. Точка пересечения этой прямой с окружностью (точка М ) является концом вектора тока . Величина тока равна произведению длины вектора на

I 3 = 0M ּm I .

Измерение мощности производят обычно с помощью ваттметра электродинамической системы, в котором имеются две катушки - неподвижная и подвижная.

Подвижная катушка, выполненная из очень тонкого провода, имеет практически чисто активное сопротивление и называется параллельной обмоткой. Ее включают параллельно участку цепи, подобно вольтметру. Жестко скрепленная со стрелкой (указателем), она может вращаться в магнитном поле, создаваемом непод вижной катушкой.

Неподвижная катушка, выполненная из довольно толстого провода, имеет очень малое активное сопротивление и называется последовательной обмоткой. Ее включают в цепь последовательно, подобно амперметру.

На электрической схеме ваттметр изображают, как показано на рис. 3.22. Одна пара концов (на рисунке обычно расположена горизонтально) принадлежит последовательной обмотке, другая пара концов (на рисунке расположена вертикально) - параллельной. На концах одноименных зажимов обмоток (например, у начала обмоток) принято ставить точки.

Вращающий момент ваттметра, а следовательно, и его показания пропорциональны действительной части произведения комплексного напряжения на параллельной обмотке ваттметра на сопряженный комплекс тока втекающего в конец последовательной (токовой) обмотки ваттметра и снабженной точкой:

Напряжение на параллельной обмотке берут равным разности потенциалов между ее концом, имеющим точку (точка а), и ее концом, не имеющим точки (точка ). Предполагается, что ток втекает в конец последовательной обмотки, у которого поставлена точка.

Цена деления ваттметра определяется как частное от деления произведения номинального напряжения на номинальный ток (указывают на лицевой стороне прибора) на число делений шкалы.

Пример 41. Номинальное напряжение ваттметра 120 В. Номинальный ток 5 А. Шкала имеет 150 делений. Определить цену деления ваттметра.

Решение. Цена деления ваттметра равна

Ваттметр - средство измерения мощности электрического тока. В основу большинства ваттметров положены электродинамические измерительные механизмы . Ваттметры устанавливаются в электрических силовых щитах на электростанциях, а также в электрических самопишущих приборах.
Ваттметр - измеритель мощности электрического тока.

Ваттметры были изобретены в середине 1990-х гг. в Англии и Германии. На российских электростанциях ваттметры стали устанавливаться в конце 1890-х гг. (германского производства). С развитием энергетики и крупного промышленного производства происходил рост выпуска ваттметров различной модификации в наиболее развитых странах мира в первой половине XX в. В Советском Союзе производство ваттметров для комплектации электростанций и крупных промышленных предприятий (потребляющих в больших объемах электрическую энергию) началось в середине 1930-х гг. при содействии германских и американских фирм. Во второй половине XX в. (до 1990-х гг.) предприятиями Советского Союза выпускались ваттметры нескольких модификаций.

1. Для измерения реактивной мощности электрического тока методом одного ваттметра. Этот метод заключается в непосредственном измерении реактивной мощности в симметрично нагруженной трехфазной сети с нулевым проводом и без него.

В трехфазной сети при симметричной нагрузке реактивная мощность во всех фазах одинакова. Поэтому возможно использование одного ваттметра, подключенного таким способом, что токовая цепь включается в одну фазу, а цепь напряжения подключается к двум другим.

При этом обеспечивается необходимый для измерения фазовый сдвиг, имеющий место в трехфазной сети, т. е. сдвиг фазы в 90° - между фазным и линейным напряжением. Чтобы получить суммарную (общую) величину реактивной мощности электрической трехфазной системы, показание ваттметра умножают на 3. Электродинамический измерительный механизм ваттметра формирует показания как результат взаимодействия двух токов с учетом сдвига фаз между ними. Если через неподвижную катушку данного прибора, выполненную из толстого провода, протекает ток нагрузки (токовая цепь), а подвижная катушка (с дополнительным сопротивлением или без него) так подключена к цепи напряжения, что протекающий через катушку ток пропорционален этому напряжению, то показание ваттметра пропорционально активной мощности:

В специальных схемах электродинамические ваттметры применяют и как измерители реактивной мощности и реже - для измерения полной мощности электрического тока. Перегрузка измерительного механизма ваттметра может возникнуть в некоторых случаях еще на подходе указателя прибора к конечному значению шкалы, потому что показания зависят от коэффициента мощности.

2. Ваттметр многоэлементный - является измерителем мощности электрического тока, включает в себя два или три механически связанных измерительных механизма.
У такого прибора вращающие моменты измерительных механизмов, создаваемые измеряемой величиной электрического тока, воздействуют на общую ось . Результирующий момент соответствует суммарной мощности, значение которой считывается по шкале. Ваттметр многоэлементный не имеет универсального применения и предназначен для определенного типа электрических цепей.

3. Ваттметр с самокорректировкой - прибор с корректирующей обмоткой, предназначенной для исключения погрешности, которая возникает в зависимости от схемы подключения ваттметра вследствие отбора прибором мощности из измеряемой электрической цепи.
В данном приборе имеется вторая неподвижная токовая корректирующая катушка, через которую протекает ток из цепи напряжения iau, что позволяет скомпенсировать соответствующую составляющую магнитного поля. При отказе (или отключении) самокоррекции вторую токовую катушку используют в некоторых случаях для расширения диапазона измерений.

Производство ваттметров в Советском Союзе росло непрерывно в период 1960-1980-х гг., а с началом новых экономических рыночных реформ в 1990-х гг. их выпуск резко сократился. На многих предприятиях энергетики и промышленности России даже в начале XXI в. используются ваттметры различных модификаций, выпущенные во второй половине 1980-х гг. и имеющие Знак качества СССР. Такие ваттметры обычно проходят положенные по инструкции на эти электроизмерительные приборы поверки в специальных метрологических лабораториях. В России ваттметры изготавливаются по заказам таких марок: В-10/150, В-20/300 и др.

  • Предыдущее: ВАТЕРПАС
  • Следующее: ВЕБЕРМЕТР
Категория: